

\%, fractions, decimals, 1 out of...

- 12 is what percent of 16 ?
- numerator/denominator*100 (\% total)
- $12 / 16^{*} 100=75 \%$
- Percent to fraction
- (Least common denominator)
- $12 / 16$ LCD = ?
- 75/100 LCD = ?
- Percent to decimal
- \%/100
- $75 / 100=$?
- "One out of..."
- $1 / \%$ in decimal
- Express 0.63% into "one out of..."

Percentage change

- Last year's budget was P83,251,980. This year, you're told, the budget will be cut to P80,754,421. By how many percent will the budget decrease?
(80,754,421-
$83,251,980) / 83,251,980 * 100=$?
- (New - Old)/Old*100

Percentage change

- Last year's budget was P83,251,980. This year, you're told, the budget will be cut by 3%. What will this year's budget be?
- 83,251,980*0.97
- Value*(1-\% in decimal)

Percentage change

- This year's budget will be cut by 3% to P80,754,421. What was the previous budget?
- 80,754,421/.97
- Value/(1-\% in decimal)
- This year's budget will be increased by 3% to P80,754,421. What was the previous budget?
- 80,754,421*1.03
- Value*(1 + \% in decimal)

\% - \%

- A Reuters Institute study found concern about false or misleading information online among adult Filipinos rising from 56\% last year to 64% this. How would you report the difference?
- Concern over online misinfo rose by:
- 8 percentage points (64\% - 56\%)
- 14.3\% (64-56)/56*100

7

Mean, median, mode

- Mean = simple average
- sum of numbers/count of numbers
- Median = middle value (typical)
- Sort all the values from lowest highest
- $(\mathrm{n}+1) / 2$ (odd)
- $n / 2$ and ($n / 2$)+1 (even)
- Mode = most common or frequent value

Ratios

- Relationship between two numbers
- Ratio =a/b

Rates

- Various functions but useful to compare two dissimilar places or events

COVID-19 infections in different countries

- Crimes in different capitals
- Deaths from various disease
- GDP

Rates for small numbers

location	Total cases as of 9/15/2020	population	total cases/pop'n	\% (per 100)	cases per 100,000	cases per million
Brunei	145	449,002	0.000322938	0.0323%	32	323
Cambodia	275	$16,767,851$	$1.64004 \mathrm{E}-05$	0.0016%	2	16
Indonesia	225,030	$275,501,344$	0.000816802	0.0817%	82	817
Laos	23	$7,529,477$	$3.05466 \mathrm{E}-06$	0.0003%	0	3
Malaysia	9,946	$33,938,216$	0.000293062	0.0293%	29	293
Myanmar	3,299	$54,179,312$	$6.08904 \mathrm{E}-05$	0.0061%	6	61
Philippines	265,863	$115,559,008$	0.002300669	0.2301%	230	2,301
Singapore	57,454	$5,637,022$	0.010192261	1.0192%	1,019	10,192
Thailand	3,480	$71,697,024$	$4.85376 \mathrm{E}-05$	0.0049%	5	49
Vietnam	1,063	$98,186,856$	$1.08263 \mathrm{E}-05$	0.0011%	1	11

Rates for large numbers

- GDP, national debt
- Per capita = Value / population (aka per person)

Country	Population ('000)	GDP	Rank	GDP per capita	Rank
Brunei	430.0	13,925	10	32,383	2
Cambodia	$16,592.1$	27,165	8	1,637	9
Indonesia	$272,248.4$	$1,185,777$	1	4,355	5
Lao PDR	$7,337.8$	19,635	9	2,676	8
Malaysia	$32,576.3$	372,770	5	11,443	3
Myanmar	$55,295.0$	72,863	7	1,318	10
Philippines	$110,198.0$	393,612	4	3,572	7
Singapore	$5,453.6$	394,579	3	72,352	1
Thailand	$65,213.0$	505,890	2	7,758	4
VietNam	$98,506.2$	361,962	6	3,675	6

CPI, purchasing power, inflation

- $\mathrm{CPI}=$ change in the average retail prices of a fixed basket of goods and services commonly purchased by households relative to a base year
- You can use CPI to compute purchasing power of peso and inflation rate
- Adjusting for inflation

CPI Now
CPI Then
Value

Minimum wage in Metro Manila

Year	Wage	CPI
2018	537	100.0
2022	570	115.3 2023
Year	W10	Wage
(as of Jun		
2023)		

power\end{array}\right|\)| 1.00 | | |
| :--- | :--- | :--- |
| 2018 | 537 | 0.87
 2022 |
| 2023 | 610 | 0.83
 (as of Jun
 2023) |

(1) How much is the
minimum wage in Metro Manila in 2018 worth today? (CPI New/CPI Earlier)*Earlier Value
(2) How much is the new wage at real prices (2018)?

Value * Purchasing power now

Google search

Google $\operatorname{sqrt(175^{*}12)^{\wedge }3}$
Simplify Formula (alculator Answer Images Shopping Books Maps (a)

Journalist's guide calculators

This page serves as the companion calculator collection for our journalist's guide. Here you'll find tools that will help every reporter bring numbers to their readers. It should help with everyday computations 囲, such as percentages for poll results [il]; contextualizing numbers so the audience inherently understands them, like our weird and wonderful units converter \mathcal{B}; and other tools, like the time zone calculator for organizing interviews across the world 0 . We're here to help you construct the perfect story \square

Basic math calculators $\underset{\sim}{\circ}$

\equiv •mni ${ }^{\circ}$ CALCULATOR
 Making it Count:
 A Journalist's Guide to Numbers

Get your FREE Guide here!

```
Your email address here
```

Journalism requires wrestling facts out of statistics - something journalists often aren't taught to do. We created this journalist's guide to help them unlock the true powers of numbers. 5

```
Get your FREE guide
```

Learn about:
 How to check if there is a story contained within your data.
\square Easy ways to check your calculations.
1: The most common journalist calculations, with a few examples.
\square The importance of proper data visualization and some software recommendations.
Q How to accurately fact-check dubious claims with a step-by-step guide.
*. A host of helpful tools to save you a lot of time and effort.

Standard deviation

- How dispersed the data is around the mean
- What to remember

68\% of values within 1 standard deviation from the mean
95\% values within 2 standard deviations from the mean
99.7% of values within 3 standard deviations from the mean

Example

Average score $=\mathrm{P} 100 ; \mathrm{SD}=\mathrm{P} 17$
68\% = P83 to P117'95\% = \$66 to P134;
$99.7 \%=$ P45 to P151

A story of standard deviations
traveltips
The Snowiest Mountains:
Where to Ski, and When
Planning a ski or snowboarding vacation? Data can direct you to
the mountains most likely to have the best snow, either around
the holiday season or in the spring.

https://www.nytimes.co m/2019/11/27/travel/bes t-snow-skiing.html

